Abstract

An ultrahigh resolution probe technique for charactering nanoscale Seebeck coefficient was developed based on a modified conductive AFM probe with local heating function. The heated AFM conductive tip realizes nanoscale thermal contact between the AFM tip and the thermoelectric samples and successfully excites nanoscale thermoelectric signal. Excellent agreement was found between nanoscale Seebeck coefficient values and their corresponding macroscopy measurements in thermoelectric bulk and thin films. Such AFM-based thermoelectric probe technique provides a very convenient and promising tool for measuring nanoscale thermoelectric parameters with ultrahigh resolution up to 15 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.