Abstract

Photonic nanocavities with high quality (Q) factors are essential components for integrated optical circuits. The use of crystalline silicon carbide (SiC) for such nanocavities enables the realization of devices with superior properties. We fabricate ultrahigh-Q SiC photonic crystal nanocavities by etching air holes into a 4H-SiC slab that is prepared without using hydrogen ion implantation, which usually causes higher absorption losses. In addition, compared to usual designs, a relatively thin slab is utilized to avoid losses through cross-polarized mode coupling induced by the tapered air holes. We obtain a heterostructure nanocavity with a high experimental Q factor of 6.3×105, which is 16 times larger than the highest Q among the previously reported values for nanocavities based on crystalline SiC. We also show that our nanocavity exhibits a high normalized second-harmonic conversion efficiency of 1900%/W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.