Abstract

Platinum (Pt) metal is widely acknowledged as a highly efficient electrocatalyst for hydrogen evolution reaction (HER) in acidic electrolyte. However, its performance in alkaline environments is significantly lower owing to the sluggish water dissociation step. Herein, we synthesized an ultrahigh Pt-mass-activity alkaline HER catalyst using microwave reduction method in air. Our catalyst, PtRu@CNT, comprises PtRu alloy nanoparticles uniformly loaded on carbon nanotubes, with Pt and Ru contents of 12.3 wt% and 4.5 wt%, respectively. The PtRu alloy nanoparticles have an average diameter of about 3 nm and a face-centered cubic structure, and the introduction of Ru has led to a modified electronic structure in Pt. As a result, an impressively low HER overpotential of 13 mV was achieved, significantly lower than commercial 20 wt% Pt/C (61 mV). PtRu@CNT exhibited a high turnover frequency based on metal mass of 3.06 s−1 at 100 mV, about 6 times higher than commercial Pt/C (0.46 s−1 at 100 mV), highlighting its excellent intrinsic activity. The HER mechanism of PtRu@CNT is a Volmer-Tafel mechanism, where the rate-limiting step changed to the recombination of hydrogen atoms from initial water dissociation, attributed to the presence of Ru. The alkaline HER activity of PtRu@CNT ranks among the best of currently reported Pt-based catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.