Abstract
AbstractWe have carried out in situ high‐pressure acoustic velocity measurements of (Fe2+, Al)‐bearing MgSiO3 glass up to pressures of 155 GPa, which confirmed a distinct pressure‐induced trend change in the transverse acoustic velocity (VS) profile around 98 GPa, likely caused by the Si‐O coordination number (CN) change from 6 to 6+. Although it has been reported that the substitution of Fe2+ in MgSiO3 glass induces almost linear velocity reduction up to ∼160 GPa, we revealed that the VS profile of (Fe2+, Al)‐bearing MgSiO3 becomes anomalously steeper above ∼100 GPa and eventually came to be equivalent to MgSiO3 glass above ∼125 GPa. This implies the incorporation of Al into Fe‐bearing MgSiO3 glass significantly facilitates making it far elastically stiffer and thus the densification under pressures well within the Earth's lower mantle. Our results indicate the possible presence of stiff and highly dense silicate melts in deep MOs in the rocky terrestrial planets.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have