Abstract

BiFeO3-BaTiO3 (BF-BT) dielectric ceramics are receiving more and more concern for advanced energy storage devices owing to their excellent ferroelectric properties and environmental sustainability. However, the energy density and efficiency are limited in spite of the large remanent polarization. Herein, we proposed a multiscale optimization strategy via a local compositional disorder with a Birich content and nanodomain engineering by introducing the Sr0.7Bi0.2Ca0.1TiO3 (SBCT) into BF-BT ceramics. Interestingly, an extraordinary energy storage property (ESP) with a high reversible energy storage density (Wrec) of ∼3.79 J/cm3 and an ultrahigh polarization discrepancy (ΔP) of ∼58.5 μC/cm2 were obtained in the SBCT-modified BF-BT ceramics under 160 kV/cm. The boosted ESP should be attributed to the fact that the replacement of A/B-sites cations could transform the long-range ferroelectric order of the BF-BT system into polar nanoregions (PNRs) along with the refined grain size, decreased leakage current, and broadened energy band gap. Moreover, good frequency (1-103 Hz) and temperature (25-125 °C) stabilities, high fatigue resistance (× 105), large power density (∼31.1 MW/cm3), and fast discharge time (∼97 ns) were also observed for the optimized ceramics. These results illustrate a potentially effective method for creating high ESP lead-free ceramics at a low electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.