Abstract

We show that noncollinear high harmonic generation (HHG) can be fully understood in terms of nonlinear optical wave mixing. We demonstrate this by superposing on the fundamental ω1 field its second harmonic ω2 of variable intensity in a noncollinear geometry. It allows us to identify, by momentum conservation, each field's contribution (n1,n2) to the extreme ultraviolet emission at frequency Ω = n1ω1 + n2ω2. We observe that the photon (Ω) yield follows an n2 power law on the ω2 intensity, before saturation. It demonstrates that, although HHG is a highly nonperturbative process, a perturbation theory can still be developed around it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.