Abstract

AbstractSingle‐atom catalysts (SACs) show high catalytic efficiency in accelerating conversion of lithium polysulfides (LiPS), and are thus promising for suppressing the shuttle effect observed in lithium−sulfur batteries (LSBs); however, single‐atom catalytic sites with low content of catalysts largely restrict their catalytic effect. Herein, a CoP cluster supported by a N‐doped carbon matrix (CoP cluster/NC) with atomic‐level dispersion and an ultrahigh content (25.5 wt.%) of Co atoms is fabricated via an in situ low‐temperature phosphorization strategy and employed as a dual‐atom‐site catalyst for catalyzing LiPS conversion. The CoP cluster/NC with abundant unsaturated CoP coordination provides dual‐atom sites of Co and P to dynamically adsorb/desorb sulfur species and Li+ ions, respectively, synergistically promoting the conversion of LiPS. The dual‐atom‐site catalytic mechanism is evidenced by substantial characterizations including X‐ray absorption fine structure measurements and density functional theory calculations. Consequently, the S@CoP cluster/NC cathode shows superior cycling and rate performance. Even at a high sulfur loading of 6.2 mg cm−2, a high areal capacity of 6.5 mAh cm−2 that surpasses most commercial lithium–ion batteries can be achieved. This study opens a new avenue in the development of advanced catalysts with new catalytic mechanisms for high‐performance LSBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call