Abstract

SummaryNanostructured alloy-type electrode materials and its composites have shown extraordinary promise for lithium-ion batteries (LIBs) with exceptional gravimetric capacity. However, studies to date are usually limited to laboratory cells with too low mass loading (and thus too low areal capacity) to exert significant practical impact. Herein, by impregnating micrometer-sized SnO2/graphene composites into 3D holey graphene frameworks (HGF), we show that a well-designed 3D-HGF/SnO2 composite anode with a high mass loading of 12 mg cm−2 can deliver an ultra-high areal capacity up to 14.5 mAh cm−2 under current density of 0.2 mA cm−2 and stable areal capacity of 9.5 mAh cm−2 under current density of 2.4 mA cm−2, considerably outperforming those in the state-of-art research devices or commercial devices. This robust realization of high areal capacity defines a critical step to capturing the full potential of high-capacity alloy-type electrode materials in practical LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.