Abstract
Skin-like thermoelectric (TE) films with temperature- and strain-sensing functions are highly desirable for human-machine interaction systems and wearable devices. However, current TE films still face challenges in achieving high flexibility and excellent sensing performance simultaneously. Herein, for the first time, a facile roll-to-roll strategy is proposed to fabricate an ultraflexible chalcogenide glass-polytetrafluoroethylene composite film with superior temperature- and strain-sensing performance. The unique reticular network of the composite film endows it with efficient Seebeck effect and flexibility, leading to a high Seebeck coefficient (731 µV/K), rapid temperature response (≈0.7 s), and excellent strain sensitivity (gauge factor = 836). Based on this high-performance composite film, an intelligent robotic hand for action feedback and temperature alarm is fabricated, demonstrating its great potential in human-machine interaction. Such TE film fabrication strategy not only brings new inspiration for wearable inorganic TE devices, but also sets the stage for a wide implementation of multifunctional human-machine interaction systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.