Abstract

Ultrafine SnO2 particles are encapsulated in the hollow nanochannels of ordered mesoporous carbon (OMC) framework by simple infiltration of tin precursor and heat treatment. The SnO2@OMC anode delivers excellent cyclic stability with a reversible specific capacity of ∼1000 mAh g−1 after 100 cycles at 100 mA g−1 for Li-ion batteries (LIBs). It also presents an excellent rate performance with a specific capacity of 680 mA g−1 at a high current density of 500 mA g−1. Several functional features and ameliorating geometries play positive roles in Li-storage performance and stability of the electrode. They include (i) the intimate electrical contacts between the SnO2 nanoparticles and the walls of OMC channels to facilitate fast ion/electron transfer, (ii) the large surface area originating from the unique architecture of the composite, and (iii) the encapsulation of SnO2 particles within the channels to suppress their volume expansion during charge/discharge cycles. The reversibility of the conversion reaction is also supported by the high Li-ion diffusion coefficient with enhanced electrochemical reaction kinetics. Based on the above findings, this work may offer new insights into the rational nanostructural design of electrode materials for high performance rechargeable batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.