Abstract

Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three-dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m(2) g(-1)), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium-ion batteries, a SnO2 @OMC composite material can deliver an initial charge capacity of 943 mAh g(-1) and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g(-1), even exhibit a capacity of 503 mA h g(-1) after 100 cycles at 160 mA g(-1). In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium-ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call