Abstract
GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS2-MWCNTs (MoS2-CNTs) were produced via the in situ synthesis of MoS2 within multi-walled carbon nanotubes (MWCNTs). The electrochemically superior GPC-350/MoS2-CNTs nanocomposite was then achieved by combining GPC-350 with MoS2-CNTs. The polypyrrole encapsulation serves to protect the ultrafine Co-MOF, preventing its degradation during the calcination process. The linear detection range of the GPC-350/MoS2-CNTs/GCE sensor for the determination of catechin (CA)in phosphate buffered saline (PBS) was from 5.0 to 1800.0 nM with a limit of detection of 1.78 nM. In addition, the materials were characterized using SEM, EDX, TEM, XRD, EIS, XPS, FTIR, and Raman. These results indicate that the synthesis of GPC-350/MoS2-CNTs nanocomposites is successful and CA in beveragessamples can be effectively detected using electrochemical sensors. Additionally, the reaction mechanism of CA was explored through cyclic voltammetry. The application of GPC-350/MoS2-CNTs nanocomposites in sensor technology offers innovative approaches for the ultrasensitive detection of flavonoids.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have