Abstract

Advanced functionalities of silicon nanowires are size-dependent and downscaling of the nanostructure often leads to higher device performances. Single-crystal silicon nanowires with diameters approaching a single unit cell are fabricated using membrane-filtrated catalyst assisted chemical etching. Atomically filtrated gold is used as uniform pattern to direct anisotropic etching of dense silicon nanowire arrays. The size of the nanowires can be controlled by engineering the molecular weight of Poly(methyl methacrylate) used to fabricate the polymer globule membranes. The smallest silicon nanowires with 0.9 nm diameters exhibit direct, and wide band gap of 3.55 eV and establishes a new record. The experimentally obtained silicon nanowires in this size fill the valuable gap below the few-nanometer regime where to date only theoretical predictions have been available. This fabrication approach could provide facile access to atomic-scale silicon, which can bring further advancement to next generation nanodevices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call