Abstract

Accurately regulating ultrafine molybdenum carbide (MoC)-based catalysts is a significant challenge in the rational design of hydrogen evolution reaction (HER) electrocatalysts. Herein, under the guidance of the first principle calculations, we proposed an in-situ polyoxometalate-confined strategy for creating uniformly distributed ultrafine Co-MoC bimetallic nanoparticles in porous carbon nanostars, with the assistance of precisely designed metal–organic framework (MOF). The Co-MoC@C electrocatalyst has a high specific surface area of 969 m2·g−1 because of the conductive carbon substrate with abundant mesopores, which makes for exposing more active sites of Co-MoC nanocrystals (∼1.5 nm) and facilitating electron/ion transport. Thus, Co-MoC@C electrocatalyst shows the excellent electrochemical activity with overpotentials of 88.4 mV and 66.6 mV at a current density of 10 mA·cm−2 under acidic and alkaline conditions, respectively. The in-situ polyoxometalate-confined strategy will provide a new guideline for the design and preparation of efficient HER electrocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call