Abstract

Nickel iron hydroxides are the most promising non-noble electrocatalysts for oxygen evolution reaction (OER) in alkaline media. By in situ reduction of metal precursors, compositionally controlled three-dimensional NixFey nanofoams (NFs) are synthesized with high surface area and uniformly distributed bimetallic networks. The resultant ultrafine and highly disordered amorphous Ni2Fe1 NFs exhibit extraordinary electrocatalytic performance toward OER and overall water splitting in alkaline media. At a potential as low as 1.42V (vs. RHE), Ni2Fe1 NFs can deliver a current density of 10mA/cm2 and show negligible activity loss after 12h stability test. Even at large current flux of 100mA/cm2, an ultralow overpotential of 0.27V is achieved, which is about 0.18V more negative than benchmark RuO2. Both ex-situ Mӧssbauer spectroscopy and X-ray Absorption Spectroscopy reveal a phase separation and transformation for the Ni2Fe1 catalyst during OER process. The evolution of oxidation state and disordered structure of Ni2Fe1 might be a key to the high catalytic performance for OER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.