Abstract

Abstract As an exceptional nonlinear material, graphene offers versatile appealing properties, such as electro-optic tunability and high electromagnetic field confinement in the terahertz regime, spurring advance in ultrashort pulse formation, photodetectors and plasmonic emission. However, limited by atomic thickness, weak light–matter interaction still limits the development of integrated optical devices based on graphene. Here, an exquisitely designed meta-cavities combined with patterned graphene is used to overcome this challenge and promote THz-graphene interaction via terahertz location oscillation. By using an 800 nm pump laser, the local field-induced strong interaction allows sensitive responses to the ultrafast energy transfer from the ultrafast optical pump to graphene electron heat, enabling 46.2% enhancement of terahertz transparency. Such optical modulation of terahertz waves shows ultrafast response in delay less than 10 ps. Moreover, thanks to the nature of graphene, the device shows unique potential for electrically dynamic tuning and further bandwidth broadening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.