Abstract

The metamaterial analogue of electromagnetically induced transparency (EIT) in terahertz (THz) regime holds fascinating prospects for filling the THz gap in various functional devices. In this paper, we propose a novel hybrid metamaterial to actively manipulate the resonance strength of EIT effect. By integrating a monolayer graphene into a THz metal metamaterial consisting of a split ring resonator (SRR) enclosed within a larger closed ring resonator (CRR), an on-to-off modulation of the EIT transparency window is achieved under different Fermi levels of graphene. According to the classical two-particle model and the distributions of the electric field and surface charge density, the physical mechanism is attributed to the recombination effect of conductive graphene. This work reveals the universal interaction of the monolayer graphene on the SRR and offers a new perspective towards designing THz functional devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.