Abstract

Direct visualization of electronic and molecular events during biochemical reactions is essential to mechanistic insights. This Letter presents an in-depth analysis of the serial crystallographic data sets collected by Barends and Schlichting et al. ( Science 2015 , 350 , 445 ) that probe the ligand photodissociation in carbonmonoxy myoglobin. This analysis reveals electron density changes caused by the formation of high-spin 3d atomic orbitals of the heme iron upon photolysis and their dynamic behaviors within the first few picoseconds. The heme iron is found popping out of and recoiling back into the heme plane in succession. These findings provide long-awaited visual validations for previous works using ultrafast spectroscopy and molecular dynamics simulations. Electron density variations are also found largely in the solvent during the first period of a low-frequency oscillation. This work demonstrates the importance of the analytical methods in detecting and isolating weak, transient signals of electronic changes arising from chemical reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call