Abstract

Optically induced intersite spin transfer (OISTR) promises manipulation of spin systems within the ultimate time limit of laser excitation. Following its prediction, signatures of ultrafast spin transfer between oppositely aligned spin sublattices have been observed in magnetic alloys and multilayers. However, it is known neither from theory nor from experiment whether the band structure immediately follows the ultrafast change in spin polarization or whether the exchange split bands remain rigid. We show that ultrafast spin transfer occurs even in ferromagnetic gadolinium metal. Charge transfer between localized surface and extended valence-band states leads to a decrease of the surface spin polarization. This synchronously alters the exchange splitting of the bulk valence bands during laser excitation. Moreover, the onset of demagnetization can be tuned by over 200 fs by changing the temperature-dependent spin mixing. Our results show a promising route to ultrafast control of the magnetization, widening the impact and applicability of OISTR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.