Abstract

A dual-channel high-efficiency, high-throughput custom spectroscopic system has been designed and implemented at DIII-D to measure localized ion thermal fluctuations associated with drift wave turbulence. A large-area prism-coupled transmission grating and high-throughput collection optics are employed to observe C VI emission centered near λ=529 nm. The diagnostic achieves 0.25 nm resolution over a 2.0 nm spectral band via eight discrete spectral channels. A turbulence-relevant time resolution of 1 μs is achieved using cooled high-speed avalanche photodiodes and ultralow-noise preamplifiers. The system sensitivity is designed to provide measurements of normalized ion temperature fluctuations on the order of δT(i)/T(i)≤1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.