Abstract
Thermally expanded core (TEC) technology is an effective method of high-power fiber lasers. Miniaturization is also a major challenge for high-power lasers. We have proposed a miniaturized mode-locker based on TEC fiber and MoTe2-polyvinyl alcohol (PVA) film. The proposed mode-locker is consisting of two TEC ferrules, a piece of MoTe2-PVA film and a ceramic sleeve. The length of the proposed device is about 20 mm, and its outer diameter is about 2 mm. The relations between heating time, heating temperature, and mode field diameter (MFD) have been numerically simulated. The bending loss with respect to MFD has also been analyzed. The simulation results have revealed the trade-off relation between maximal tolerable intensity and low cavity loss, which means that there is an optimal MFD corresponding to optimal heating time and heating temperature. The proposed mode-locker has been applied in an integrated fiber laser, which has emitted ultrafast soliton with 3 times intensity larger than that of conventional sandwiched-type saturable absorber. The proposed mode-locker and fiber laser will find important applications in laser processing, laser ranging, and optical communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.