Abstract

We use inhomogeneous nonequilibrium dynamical mean-field theory to investigate the spreading of photoexcited carriers in Mott insulating heterostructures with strong internal fields. Antiferromagnetic correlations are found to affect the carrier dynamics in a crucial manner: An antiferromagnetic spin background can absorb energy from photoexcited carriers on an ultrafast time scale, thus enabling fast transport between different layers and the separation of electron and holelike carriers, whereas in the paramagnetic state, carriers become localized in strong fields. This interplay between charge and spin degrees of freedom can be exploited to control the functionality of devices based on Mott insulating heterostructures with polar layers, e.g., for photovoltaic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.