Abstract

Ultrafast dynamics of protein side chains are involved in important biological processes such as ligand binding, protein folding, and hydration. In addition, the dynamics of a side chain can report on local environments within proteins. While protein side chain dynamics have been probed for proteins in solution with nuclear magnetic resonance and infrared methods for decades, information about side chain dynamics at interfaces is lacking. At the same time, the dynamics and motions of side chains can be particularly important for interfacial binding and protein-driven surface manipulation. We here demonstrate that ultrafast reorientation dynamics of leucine amino acids at interfaces can be recorded in situ and in real time using polarization- and time-resolved pump-probe sum frequency generation (SFG). Combined with molecular dynamics simulations, time-resolved SFG was used to probe the reorientation of the isopropyl methyl groups of l-leucine at the air-water interface. The data show that the methyl units reorient diffusively at an in plane rate of Dφ = 0.07 rad(2)/ps and an out of plane rate of Dθ = 0.05 rad(2)/ps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.