Abstract

We use ultrafast optical techniques to investigate the dynamics of charge and spin carriers and coherent phonons as well as magnetic order in III-V ferromagnetic semiconductors. We observe a rich array of dynamical phenomena that are absent in traditional nonmagnetic semiconductors or metallic ferromagnets. Very short charge and spin lifetimes of the photoinjected carriers (∼2ps) and multi-level charge decay dynamics are observed, which are attributed to a large density of mid-bandgap states introduced during low temperature molecular beam epitaxy (LT-MBE) growth and highly p-type Mn doping. During the very short free carrier lifetime, the coercivity of the system is seen to be reduced. We attribute this photo-induced ‘softening’ to the transient modification of carrier-mediated ferromagnetic exchange coupling between Mn spins. After the photogenerated free electrons are trapped by defects, periodic oscillations appear in differential reflectivity due to the coherent generation of acoustic phonon wavepackets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.