Abstract

The two-photon absorption (TPA) characteristics of PMMA discs doped with three different dyes were studied using an fs-pulsed Ti-Sapphire laser as the pump source, and employing the open-aperture Z-scan technique. TPA cross-sections obtained for PMMA doped with the dyes PM597, DCM and rhodamine 6G–rhodamine B (co-doped) were found to be equal to 24.7, 33.3 and 32.3 GM, respectively (1 GM=10 −50 cm 4 s phot −1 mol −1). Furthermore, two-photon fluorescence was measured for the samples containing DCM and rhodamine 6G–rhodamine B (co-doped). Compared to the one-photon fluorescence spectrum, the peaks in the two-photon fluorescence spectrum were red shifted and the extent of red shift increased with increasing doping concentration. We have also observed that the red shift in the two-photon fluorescence peak of the samples in the solid form is much larger than that in the solution state. This phenomenon could be explained by a twisted intra-molecular charge transfer model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call