Abstract

In this work, we experimentally study the nonlinear absorption enhancement of saturable absorption and two-photon absorption on a hybrid structure comprising a monolayer MoS2 and Au nanoantennas via femtosecond I-scan measurement. Specifically, a 13-fold increment in the linear absorption coefficient is attained at 1.85eV, along with an 8-fold enhancement of the two-photon absorption coefficient at 1.65eV, which is attributed to exciton-plasmon coupling resonance and plasmonic hot electron transfer. The exciton-plasmon coupling effect is characterized by stable photoluminescence experiments. Furthermore, the exciton recombination time is extracted from the pump-probe measurement, whose value in the hybrid structure is shortened from 18.5ps (pure MoS2) to 1.84ps. Our findings facilitate a new perspective to modulate the nonlinear optical response and to promote the performance of nonlinear photonic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.