Abstract

Negative capacitance gives rise to subthreshold swing (SS) below the fundamental limit by efficient modulation of surface potential in transistors. While negative-capacitance transition is reported in polycrystalline Pb(Zr0.2Ti0.8)O3 (PZT) and HfZrO2 (HZO) thin-films in few microseconds timescale, low SS is not persistent over a wide range of drain current when used instead of conventional dielectrics. In this work, the clear nano-second negative transition states in 2D single-crystal CuInP2S6 (CIPS) flakes have been demonstrated by an alternative fast-transient measurement technique. Further, integrating this ultrafast NC transition with the localized density of states of Dirac contacts and controlled charge transfer in the CIPS/channel (MoS2/graphene) a state-of-the-art device architecture, negative capacitance Dirac source drain field effect transistor (FET) is introduced. This yields an ultralow SS of 4.8mV dec-1 with an average sub-10 SS across five decades with on-off ratio exceeding 107, by simultaneous improvement of transport and body factors in monolayer MoS2-based FET, outperforming all previous reports. This approach could pave the way to achieve ultralow-SS FETs for future high-speed and low-power electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.