Abstract

Using x-ray emission and photoemission spectroscopies to measure the occupied valence levels in a thin crystalline ice film, we resolve the ionization-induced dissociation of water in ice on a femtosecond time scale. Isotope substitution confirms proton transfer during the core-hole lifetime in spite of the nonresonant excitation. Through ab initio molecular dynamics on the core-ionized state, the dissociation and spectrum evolution are followed at femtosecond intervals. The theoretical simulations confirm the experimental analysis and allow for a detailed study of the dissociative reaction path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.