Abstract
Lithium-sulfur batteries (LSBs) have been increasingly recognized as a promising candidate for the next-generation energy-storage systems. This is primarily because LSBs demonstrate an unparalleled theoretical capacity and energy density far exceeding conventional lithium-ion batteries. However, the sluggish redox kinetics and formidable dissolution of polysulfides lead to poor sulfur utilization, serious polarization issues, and cyclic instability. Herein, sulfiphilic few-layer MoSSe nanoflake decorated on graphene (MoSSe@graphene), a two-dimensional and catalytically active hetero-structure composite, was prepared through a facile microwave method, which was used as a conceptually new sulfur host and served as an interfacial kinetic accelerator for LSBs. Specifically, this sulfiphilic MoSSe nanoflake not only strongly interacts with soluble polysulfides but also dynamically promotes polysulfide redox reactions. In addition, the 2D graphene nanosheets can provide an extra physical barrier to mitigate the diffusion of lithium polysulfides and enable much more uniform sulfur distribution, thus dramatically inhibiting polysulfides shuttling meanwhile accelerating sulfur conversion reactions. As a result, the cells with MoSSe@graphene nanohybrid achieved a superior rate performance (1091 mAh/g at 1C) and an ultralow decaying rate of 0.040 % per cycle after 1000 cycles at 1C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.