Abstract
The exciton dissociation in a model donor/acceptor heterojunction with electron-phonon couplings is simulated by a full quantum dynamical method, in which ultrafast long-range charge separation is observed. Such a novel scenario does not undergo short-range interfacial (pinned) charge transfer states, but can be mainly ascribed to the quantum resonance between local Frenkel excited states and a broad array of long-range charge transfer (LRCT) states assisted by the moderate off-diagonal vibronic couplings. The entropy-increasing effect associated with the very dense density of states for LRCT states is also found to be beneficial for lowering the free energy barrier for charge generation in organic solar cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.