Abstract

The understanding of the lattice dynamics in ferroic compounds driven by an ultrashort light pulse is an exciting research direction due to the exceptional non-linear properties (optical, elastic, electric and magnetic) of ferroic and multiferroic materials. Photo-induced strain in ferroic materials is driven by a complex interplay between charge, phonon and spin dynamics with microscopic mechanisms that still need to be elucidated. We present recent experiments where ultrafast photoinduced strain is evaluated in BiFeO3-based multiferroic materials, with a focus on the description of the ultrafast symmetry change of the unit-cell that appears after an ultrashort laser pulse. A combination of optical and X-ray time-resolved techniques will be presented. We show that it is possible to modulate at the picosecond time scale the ferroic order by playing with the out-of-plane and in-plane light-induced strains. These new results provide new insights for the understanding of the physics of photo-induced strain, in relation with the light-induced ferroelectric modulation in nanostructured ferroic compounds and could be the first step towards their use as on-purpose ferroic architectures in devices like actuators or modulators with ultra-short light pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.