Abstract
Over the past few decades, remarkable breakthroughs and progress have been achieved in ultrafast laser processing technology. Notably, the remarkable high-aspect-ratio processing capabilities of ultrafast lasers have garnered significant attention to meet the stringent performance and structural requirements of materials in specific applications. Consequently, high-aspect-ratio microstructure processing relying on nonlinear effects constitutes an indispensable aspect of this field. In the paper, we review the new features and physical mechanisms underlying ultrafast laser processing technology. It delves into the principles and research achievements of ultrafast laser-based high-aspect-ratio microstructure processing, with a particular emphasis on two pivotal technologies: filamentation processing and Bessel-like beam processing. Furthermore, the current challenges and future prospects for achieving both high precision and high aspect ratios simultaneously are discussed, aiming to provide insights and directions for the further advancement of high-aspect-ratio processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.