Abstract
Carbon black from methane pyrolysis for hydrogen is an alternative resource and can be improved for conductive material supplication. Our current work uses an ultrafast Joule heating technique to modify the methane-pyrolyzed carbon black and prepare nanoparticles of electrode material for supercapacitor application, coupled with density functional theory, structural, and electrochemical analyses. Evolution rules of the carbon and pore structures of the modified sample with an increase in temperature reveal good structure improvements. The graphitization degree of modified carbon black nanoparticles increases, and the particle morphology changes from a smooth surface, disordered structure removal, and pore formation to graphite crystallization. Band structure and state density analytical results show that the modified carbon black with a defect-free structure possesses metallic properties and exhibits good electrical conductivity. A temperature around 1576 °C to the initial graphitization was defined based on the critical point of the evolution of ordered and disordered structures, while the electrical conductivity of the carbon black nanoparticles at 2000 °C reaches 2300 S/m. The modified carbon black performed with stable charge/discharge characteristics, exhibiting a 4.31% capacitance drop at a current load of 2 A/g and a 18.31% capacitance drop at a current load of 20 A/g.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have