Abstract

We performed spin-, time- and angle-resolved extreme ultraviolet photoemission spectroscopy of excitons prepared by photoexcitation of inversion-symmetric 2H-WSe_{2} with circularly polarized light. The very short probing depth of XUV photoemission permits selective measurement of photoelectrons originating from the top-most WSe_{2} layer, allowing for direct measurement of hidden spin polarization of bright and momentum-forbidden dark excitons. Our results reveal efficient chiroptical control of bright excitons' hidden spin polarization. Following optical photoexcitation, intervalley scattering between nonequivalent K-K^{'} valleys leads to a decay of bright excitons' hidden spin polarization. Conversely, the ultrafast formation of momentum-forbidden dark excitons acts as a local spin polarization reservoir, which could be used for spin injection in van der Waals heterostructures involving multilayer transition metal dichalcogenides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call