Abstract
A rate equation model for the dark and bright excitons kinetics is proposed which explains the wide variation in the observed degree of circular polarization of the PL emission in different TMDs monolayers. Our work suggests that the dark exciton states play an important, and previously unsuspected role in determining the degree of polarization of the PL emission. A dark exciton ground state provides a robust reservoir for valley polarization, which tries to maintain a Boltzmann distribution of the bright exciton states in the same valley via the intra valley bright dark exciton scattering mechanism. The dependence of the degree of circular polarization on the detuning energy of the excitation in MoSe2 suggests that the electron–hole exchange interaction dominates over two LA phonon emission mechanism for inter valley scattering in TMDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.