Abstract

Cyanobacterial photosynthetic systems efficiently capture sunlight using the pigment-protein megacomplexes, phycobilisome (PBS). The energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. In the present study, we performed picosecond (ps) time-resolved fluorescence and femtosecond (fs) pump-probe spectroscopies on the intact PBS from a thermophilic cyanobacterium, Thermosynechococcus vulcanus, to reveal excitation energy transfer dynamics in PBS. The photophysical properties of the intact PBS were well characterized by spectroscopic measurements covering wide temporal range from femtoseconds to nanoseconds. The ps fluorescence measurements excited at 570nm, corresponding to the higher energy of the phycocyanin (PC) absorption band, demonstrated the excitation energy transfer from the PC rods to the allophycocyanin (APC) core complex as well as the energy transfer in the APC core complex. Then, the fs pump-probe measurements revealed the detailed energy transfer dynamics in the PC rods taking place in an ultrafast time scale. The results obtained in this study provide the full picture of the funnel-type excitation energy transfer with rate constants of (0.57ps)-1 → (7.3ps)-1 → (53ps)-1 → (180ps)-1 → (1800ps)-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.