Abstract

Employing the ultrafast control of electronic states of a semiconductor quantum dot in a cavity, we introduce a novel approach to achieve on-demand emission of single photons with almost perfect indistinguishability and photon pairs with near ideal entanglement. Our scheme is based on optical excitation off-resonant to a cavity mode followed by ultrafast control of the electronic states using the time-dependent quantum-confined Stark effect, which then allows for cavity-resonant emission. Our theoretical analysis takes into account cavity-loss mechanisms, the Stark effect, and phonon-induced dephasing allowing realistic predictions for finite temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call