Abstract
We have investigated the relaxation dynamics of the higher excited states of the uranyl ion in aqueous and methanolic solutions following photoexcitation to the S(1)((1)Phi(g)) state using 400 nm light. Although the time-resolved spectra are significantly different in these two solvents, the temporal dynamics studied in the entire wavelength region clearly suggest the involvement of three excited state processes in both solvents. The S(1)((1)Phi(g)) state undergoes ultrafast intersystem crossing (tau(ISC) approximately <100 fs) to the higher vibrational levels of the T(2)((3)Delta(g)) state, followed by the intramolecular vibrational relaxation (IVR) process in the later electronic state (tau(IVR) approximately 0.85 and 1 ps in aqueous and methanolic solutions, respectively). Subsequently, the T(2)((3)Delta(g)) state undergoes an internal conversion (IC) process (tau(IC) approximately l.6 and 4.5 ps in aqueous and methanol solutions, respectively) to the long-lived T(1)((3)Phi(g)) state, which is responsible for the luminescent properties of the uranyl ion. In neat methanol, because of stronger interaction between the excited triplet, T(1)((3)Phi(g)), state and the solvent via solvent to uranyl charge transfer, the U(VI) ion undergoes partial reduction to U(V) and the energy level of this state possibly lies lower than that of (UO(2)(2+))*, which is the transient species existing in aqueous solution, and hence increasing the energy gap between the T(2) and T(1) states in methanol solution. These facts possibly explain different spectral characteristics of the transient species produced in methanol and aqueous solutions as well as the longer lifetime of the IC process in methanol solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.