Abstract

Ultrafast dynamics of the excited state of 2,9,16,23-phenoxy-phthalocyanine (Pc1) and 2,9,16,23-phenoxy-phthalocyanine-zinc (Pc2) has been investigated using femtosecond transient absorption (TA) and time-resolved fluorescence (TRFL) techniques. The observed dynamics of femtosecond TA and TRFL experiments are similar, which demonstrated the intrinsic properties of the excitation and the relaxation processes in both kinds of phthalocyanines with two decay components. A multi level model has been proposed to explain the photophysical processes after Soret-band excitation. The results show that the fast decay component dynamics comes from the intramolecular vibrational relaxation, the slower ones from the internal conversion. The samples are expected to be a potential candidate for optical applications and photodynamic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call