Abstract

The femtosecond dynamics of localization and solvation of photoinjected electrons in ultrathin layers of amorphous solid H2O and D2O have been studied by time- and angle-resolved two-photon-photoelectron spectroscopy. After electron transfer from the metal substrate into the conduction band of ice, the excess electron localizes within the first 100 fs in a state at 2.9 eV above E(F), which is further stabilized by 300 meV on a time scale of 0.5-1 ps due to molecular rearrangements in the adlayer. A pronounced change of the solvation dynamics at a coverage of approximately 2 bilayers is attributed to different rigidity of the solvation shell in the bulk and near the surface of ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.