Abstract

Femtosecond time-resolved transient absorption spectroscopy was performed for a nonfluorescent solvatochromic dye, phenol blue, N-(4-dimethylaminophenyl)-1,4-benzoquinoneimine, which exhibits ultrafast nonradiative decay due to its flexible molecular structure. By exciting the molecule in ethanol (EtOH) solution with two excitation wavelengths located at shorter- and longer-wavelength sides of the visible absorption band, we observed ultrafast nonradiative decay from the excited state, followed by spectral evolution in the ground state. The nonradiative decay in the subpicosecond range creates a vibrationally hot ground state with the lifetime in the picosecond range. Subsequently, a tautomer that absorbs at shorter wavelengths is produced from the hot state, which causes a red shift of the ground-state bleach (GSB). The tautomerization presumably involves twisting of the benzoquinoneimine moiety induced by the breaking of the hydrogen bond (H-bond) between the solute and the solvent molecules. The recombination of the H-bond occurs with a time constant of ∼30 ps, and the system returns to its original state. We also observed low-frequency coherent wavepacket oscillations that modulate the GSB with dephasing times similar to the excited-state lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.