Abstract

The photophysics of two donor-substituted truxenone derivatives has been studied by femtosecond time-resolved transient absorption spectroscopy. The systems consist of a central truxenone acceptor with three triarylamine (TARA) branches which act as electron donors. Upon excitation in the visible regime an electron is transferred from the donor to the acceptor, generating a charge-separated state. This state can be probed via the characteristic absorption of the TARA radical cation around 700 nm. A second absorption band around 420 nm exhibits the same kinetics and is assigned to an absorption of the radical anion of the truxenone moiety. The back electron transfer and the recovery of the ground state can be interpreted within the framework of Marcus theory. To study the dependence of the back electron transfer on the electronic coupling, the distance between the donor and the acceptor was adjusted. Two solvents were employed, dimethylsulfoxide and dichloroethane. A biexponential decay of the bands assigned to the charge-separated state was observed, with time constants in the picosecond range. Surprisingly, the rates for electron back transfer do not follow the simple picture of the donor-acceptor distance being the determining factor. The observations are explained within a model that additionally takes steric interactions between the donor and the acceptor into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.