Abstract

Time-resolved second-harmonic generation (TRSHG) and transient photoluminescence (PL) spectroscopy are utilized to probe the ultrafast creation and subsequent relaxation of excited carriers immediately following band-gap excitation in single ZnO nanowire and nanoribbon lasers. The TRSHG signal consists of a 1−5 ps recovery present only during strong lasing and a 10−80 ps intensity-dependent component. The transient PL response from single structures exhibits an 80 ps decay component independent of pump power (free exciton PL), and a < 10 ps power-dependent component (stimulated emission) that shifts to earlier delay by ca. 10 ps at high pump fluence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.