Abstract

The growing bone-like apatite layer at the tissue-implant interface is the essential condition for materials to bond robustly to surrounding bone and may provide a favorable environment for living bone formation. Inspired by versatility of mussel adhesive proteins, we developed an ultrafast and accessible route to accelerate effectively the formation of amorphous calcium phosphate (ACP), the precursor phase of bone-like apatite, on the surface of polydopamine (PDA)-coated tricalcium silicate (TCS) within 5 min in simulated body fluid (SBF). The key of the method lies in successful preparation of PDA coating on the surface of hydrated TCS by simple dip-coating of hydrated TCS in an aqueous solution of dopamine. A strong adsorption between PDA coating and surface of hydrated TCS could be formed via bidentate hydrogen and electrostatic bonds. After 7 d of soaking in SBF, the bone-like apatite layer on the surface of PDA-coated TCS disk, about 91.1 µm in height was thicker than that on the surface of pristine TCS disk, determining about 49.5 µm. The results indicate that PDA coating can facilitate the kinetic deposition of bone-like apatite on its surface. The abundant Ca2+ ions and the lower interface energy of ACP at the interface between ACP and surfaces of PDA-coated TCS disks are responsible for the ultrafast precipitation of ACP and formation of bone-like apatite layer which is carbonated hydroxyapatite (HA) confirmed by different analytical tools. The route can open avenues for development of PDA-coated TCS biomaterials for hard tissue repair and substitution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call