Abstract

Carrier scattering processes are studied in CH3NH3PbI3 using temperature-dependent four-wave mixing experiments. Our results indicate that scattering by ionized impurities limits the interband dephasing time (T2) below 30 K, with strong electron-phonon scattering dominating at higher temperatures (with a time scale of 125 fs at 100 K). Our theoretical simulations provide quantitative agreement with the measured carrier scattering rate and show that the rate of acoustic phonon scattering is enhanced by strong spin-orbit coupling, which modifies the band-edge density of states. The Rashba coefficient extracted from fitting the experimental results (γc = 2 eV Å) is in agreement with calculations of the surface Rashba effect and recent experiments using the photogalvanic effect on thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.