Abstract

Despite decades of study, the structures adopted to accommodate an excess proton in water and the mechanism by which they interconvert remain elusive. We used ultrafast two-dimensional infrared (2D IR) spectroscopy to investigate protons in aqueous hydrochloric acid solutions. By exciting O-H stretching vibrations and detecting the spectral response throughout the mid-IR region, we observed the interaction between the stretching and bending vibrations characteristic of the flanking waters of the Zundel complex, [H(H2O)2](+), at 3200 and 1760 cm(-1), respectively. From time-dependent shifts of the stretch-bend cross peak, we determined a lower limit on the lifetime of this complex of 480 femtoseconds. These results suggest a key role for the Zundel complex in aqueous proton transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.