Abstract
The nature of the excess proton in liquid water has remained elusive after decades of extensive research. In view of ultrafast structural fluctuations of bulk water scrambling the structural motifs of excess protons in water, we selectively probe prototypical protonated water solvates in acetonitrile on the femtosecond time scale. Focusing on the Zundel cation H5 O2 (+) prepared in room-temperature acetonitrile, we unravel the distinct character of its vibrational absorption continuum and separate it from OH stretching and bending excitations in transient pump-probe spectra. The infrared absorption continuum originates from a strong ultrafast frequency modulation of the H(+) transfer vibration and its combination and overtones. Vibrational lifetimes of H5 O2 (+) are found to be in the sub-100 fs range, much shorter than those of unprotonated water. Theoretical results support a picture of proton hydration where fluctuating electrical interactions with the solvent and stochastic thermal excitations of low-frequency modes continuously modify the proton binding site while affecting its motions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.