Abstract
ABSTRACT A new mechanism of ultra-deep (up to tens of microns per pulse, sub-mm total hole depths) plasma-assisted ablative drilling of optically opaque and transparent materials by high-power nanosecond lasers proposed by Kudryashov et al. has been studied experimentally using average drilling rate and photoacoustic measurements. In the drilling experiments, average multi-micron crater depth per laser shot and instantaneous recoil pressure of ablated products have been measured as a function of laser energy at constant focusing conditions using optical transmission and contact photo acoustic techniques, respectively. Experimental results of this work support the theoretical explanation of the ultra-deep drilling mechanism as a number of stages including ultra-deep non-thermal energy delivery by a short-wavelength radiation of the surface high-temperature ablative plasma, bulk heating and melting of these materials, accompanied by the following subsurface boiling in the melt pool and resulting melt expulsion off of the target. Keywords: high-power nanosecond lasers, silicon, dielectric materials, multi-micron deep drilling, short-wavelength plasma radiation, photoacoustic and op tical monitoring and characterization
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.