Abstract

A mechanism of ultradeep (up to tens of microns per pulse, submillimeter total hole depths) plasma-assisted ablative drilling of optically opaque and transparent materials by high-power nanosecond lasers has been proposed and verified experimentally using optical transmission and contact photoacoustic techniques to measure average drilling rates per laser shot versus laser intensity at constant focusing conditions. The plots of average drilling rates versus laser intensity exhibit slopes which are in good agreement with those predicted by the proposed model and also with other experimental studies. The proposed ultradeep drilling mechanism consists of a number of stages, including ultradeep “nonthermal” energy delivery into bulk solids by the short-wavelength radiation of the hot ablative plasma, bulk heating and melting, accompanied by subsurface boiling in the melt pool, and resulting melt expulsion from the target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.