Abstract

Inverse design is a powerful approach to achieve ultracompact nanophotonic devices. Here, we propose an ultracompact programmable near-infrared nanophotonic device platform to dynamically implement inverse-designed near-infrared devices with different functions by programming the state of the phase-change material filled in each pixel. By tuning PCM block by block, the subwavelength condition for inverse-designed ultracompact devices is satisfied with large tuning pixel size. Based on the inverse-design device platform with a footprint of 6.4µm×8µm, we design and theoretically demonstrate four power splitters with different split ratios and one mode multiplexer working in the near-infrared band. The average excess losses for the power splitters with ratios of 0:1,1:1, 2:1, and 3:1 are less than 0.82, 0.65, 0.82, and 1.03dB over a wavelength span of 100nm, respectively. Meanwhile, the insertion losses of the mode multiplexer are 1.4 and 2.5dB for T E 0 and T E 1 mode, respectively, and the average crosstalk is less than -20 and -19d B, respectively. The five different devices could be configured online in a nonvolatile way by heating phase change materials with an off-chip laser, which may significantly enhance the flexibility of on-chip optical interconnections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call